
 1

ITR: A Framework for Environment-Aware, Massively Distributed Computing
David Evans (PI), Tarek Abdelzaher, David Brogan

University of Virginia, Department of Computer Science
Submitted 13 November 2001

Project Summary
The computing environments of the future will involve large numbers of small and inexpensive
devices, communicating with each other and interacting with their physical surroundings to
accomplish a task. We propose to develop the programming languages, tools and methods necessary
to produce robust, scalable and resource-efficient programs for these new computing environments.

These new computing environments will require a fundamentally new computing paradigm that will
differ in both substance and scale from previous work on concurrent programming and distributed
systems. Unlike current processors, processors in future systems will have direct links to the physical
environment through distributed sensors and actuators. Using thousands of tiny computational
elements in place of a smaller number of larger computing devices enables a non-obtrusive
computing medium with finer granularity of sensing and actuation. Computing capacity can thus be
embedded seamlessly into physical objects, for example, by spraying a target spot with a dust of
computational elements for data measurement, embedding computing motes into fabric, equipment
casing, ink, or paint, or dropping a myriad of small computationally augmented sensors on a disaster
area to search for survivors and determine structural damage.

While the hardware that enables this is becoming a reality, development of the software faces
considerable challenges. These challenges arise from scale, unreliable components, dynamic system
topology, massive interaction with the physical environment in real-time, and the need to reason
about emerging aggregate properties as opposed to individual component behavior. In this research
we propose to develop theory, methods and tools for massively distributed, environment-aware
computing (more succinctly referred to as swarm computing).

The state of swarm computing today is similar to that of sequential computing in the early 1950s.
Developers painstakingly produce swarm programs by designing and programming the actions of
individual devices, and converge on an acceptable program through extensive simulation and
experimentation. In the pre-compiler era, skeptical programmers believed that a mechanical process
could not possibly produce code of comparable quality to that produced by highly skilled machine
coders and that the cost of machine time is high enough to outweigh any possible savings in
programmer effort. The state of swarm programming today is similar: devices are still expensive
enough and resources limited enough that applications are constructed in a painstaking, trial-and-error
way to produce acceptable results for a given problem. This will change soon as the costs of devices
decreases and their capabilities increase, the human time required to develop swarm programs will
come to dominate the other costs.

Hence, we propose to develop the methods, languages and tools that will enable the principled and
efficient development of swarm programs. A key contribution will be a programming language and
development tools that enable programmers to construct and reason about programs in these
environments at an appropriate level of abstraction. The language must allow the programmer to
express programs at the level of aggregate behavior rather than the behavior of individual devices.
Further, it should allow developers to control resource consumption at levels of detail appropriate to
their requirements and application. Instead of hand coding programs for a particular “machine” (in
this case, a collection of devices operating in a physical environment), we will provide programmers
with the ability to write a program once and automatically adapt it to different deployments. Instead
of requiring trial-and-error experiments to determine how a swarm program will behave in a new
environment, we seek to develop principles and tools for predicting behavior.

 2

ITR: A Framework for Environment-Aware, Massively Distributed Computing

Advances in processor, memory and radio technology have made it possible to build small and cheap
devices that are capable of sensing and altering their environment, communicating with nearby
devices using short-range wireless channels, storing a small amount of state, and performing a limited
amount of computation. We will be able to deploy thousands to millions of these devices to perform
a wide range of applications such as monitoring poorly accessible or dangerous environments like
disaster areas, hostile territories and active nuclear fields. Hostile or dangerous terrains make it
impossible to build fixed infrastructures of powerful and expensive hosts. Instead, swarm computing
advocates the use of myriads of inexpensive devices placed arbitrarily in the environment and left
largely unattended. The capabilities of the swarm are drawn from network scale rather than from
powerful individual components resulting in a high degree of built-in fault tolerance whereby the
failure of many devices causes only a marginal decrease in the effectiveness of the application.

We propose to develop a programming language for swarms of devices that allows a programmer to
express an application in terms of desired aggregate behavior rather than explicitly programming
individual devices. We will produce a program synthesizer that automatically generates the
appropriate device programs that will implement the aggregate behavior for a particular deployment.
The program synthesizer draws from a library of primitives that can be combined to produce complex
applications with known scaling and non-functional properties. In addition to analytical results, we
will test our approach using simulations and using a physical swarm composed of wireless devices
with sensors and actuators.

Our multidisciplinary team combines expertise in many areas, and we feel it is necessary to combine
different skills and experiences to tackle this problem. Tarek Abdelzaher focuses on networks and
control theoretic approaches to systems problems; David Brogan specializes in multiagent systems
and simulation; David Evans (PI) researches programming languages, software engineering and
security.

1. Scientific Objectives
The design of programming languages for computing swarms poses several new challenges that stem
from three interdependent peculiarities of these networks: scale, physical embedding, and device-
administrator ratio.

Scale. Swarm computing involves, as a main feature, a massive number of devices. We therefore
must derive system properties that emerge as the number of devices increases. These properties need
not necessarily hold for smaller numbers of devices. An important evaluation criterion of our
language implementation would be the minimum number (or density) of devices that needs to exist
for the programmed properties to hold. We call that number, critical mass. The critical mass
limitation is, in a way, the inverse of scalability limitations. Traditional distributed computing
typically designs algorithms that scale as the number of components increase. The scalability of a
distributed algorithm is defined by the maximum number of components for which performance is
acceptable. In contrast, primitives of swarm programming languages will have a distributed
implementation that requires a minimum critical mass. The designers of swarm applications need not
be concerned with providing the desired behavior when the number of devices is low.

Probability theory provides a rich vehicle for formal analysis of such scalable algorithms. Properties
of stochastic processes typically approach deterministic values when the number of trials increases.
Similarly, a swarm application will elicit behaviors that emerge and stabilize with scale. For
example, implementing filters slightly predisposed for propagation of higher priority traffic in the
network, will result in a strict and predictable prioritization scheme when the number of hops is large
enough. Note that typically, a trade-off exists between algorithm complexity and critical mass. In the

 3

prioritization example, it may be possible to enforce strict priorities on a per hop basis. Such strict
per-hop algorithms have a minimum critical mass of one. However, they are difficult to implement
due to distributed contention over the shared medium from multiple sources carrying traffic of
different priorities. Implementing an algorithm that simply has a higher probability of sending higher
priority traffic first across a shared medium is easier but requires a larger path (i.e. a larger critical
mass) for strict prioritization to emerge end-to-end. Hence, our solutions will generally tend to rely
on the simplest possible per-node behavior that is analytically determined to be likely
(probabilistically) to provide desired global properties when critical mass is observed. We may also
implement different flavors of algorithms that differ in their simplicity/critical-mass trade-off. For
example, as the system ages to the point when the number of active nodes decreases below the critical
mass of the simplest algorithm, a more computationally intensive algorithm can be invoked to
maintain the property under the new resource constraints.

Physical Embedding. Swarm computing devices are typically equipped with sensors and actuators
that make them capable of interacting directly with a physical environment. This capability sets
swarms apart from traditional networking infrastructures (such as the Internet), where the main
problem is to control the flow of information. Algorithms will need to be developed for controlling
the exchange of information between the swarm computing network and the environment, as well
implementing distributed actions on the environment when needed.

Physical embedding also permits a different programming paradigm. Current programming
languages, at their very core, are vehicles for manipulating abstractions of computer hardware. For
example, data structures and operations performed on them are abstractions for manipulating content
of memory locations and registers. In contrast, in swarm computing the manipulated medium extends
beyond computing hardware to encompass the physical environment as well. Objects in that physical
environment might have attributes that one may read within a swarm program. This data, depending
on its different attributes, may initiate events that manipulate the state of an object (e.g., by
eliminating these objects from the environment as in a battle scenario), or change object attributes via
nearby actuators. Our programming system should be rich enough to allow programming physical
interactions with the environment the same way we program manipulation of logical data structures
today. We will not focus on the physical mechanisms for affecting and sensing the environment, but
rather on developing manipulation and observation primitives with semantics suitable to what is
possible physically and on developing algorithms that exploit shared state using physical
environments.

Device-Administrator Ratio. In typical environments today, there are a small number of computers
per system administrator. Most individuals have to act as their own system administrator for a single
machine. In larger organizations, a single overworked system administrator may be responsible for
hundreds of machines. With swarm computing, we need to have thousands or millions of computing
devices per administrator. We cannot expect people to repair or manipulate individual devices.
Hence, swarm computing applications need to be able to operate largely autonomously, even in the
presence of device failures and environmental changes.

Due to their unattended mode of operation, swarm devices need more attention to be given to their
automatic configuration, group formation, failure detection, and fault-tolerance. Swarm applications
cannot expect human administrators to repair malfunctioning devices; hence swarm programs should
not rely on identifying individual devices. This implies that most algorithms would have to support
stateless operation or store state in a distributed, environmental fashion.

Summary. The primary scientific objectives of the proposed work are:

1. Develop a theory, techniques and tools for reasoning about the scalability of massively distributed
programs.

 4

2. Develop techniques for analyzing and synthesizing swarm programs constructed by combining
primitives defined over interacting groups.

3. Define a class of primitives with known scaling properties and methods and languages for
describing their functional and non-functional properties.

2. Background
Advances in hardware have reduced the cost of computation and communication to the point where it
is now reasonable to imagine deploying applications on thousands to millions of independent
computing and communicating devices with sensors and actuators. In this section, we summarize
recent trends in hardware devices and survey related work in programming paradigms, networks, and
multiagent systems relevant to the proposed work.

Devices. The steady improvement of microprocessors has lead to devices costing a few dollars that
are as capable as desktop computers of 1985. Recent advances have led to dramatic reductions in the
cost, size and power consumption requirements for electronic devices, wireless communications, and
microelectomechanical systems (MEMS). Several hardware models of sensor nodes have been
developed, primary among them being the Rockwell WINS nodes [17] and the Berkeley motes [16].
The Smart Dust project at Berkeley is building cubic millimeter-scale self-powered autonomous
devices with the ability to perform computation and communication [60]. These devices currently
run on a 4 MHz microcontroller and have 8 KB of program memory and 512 bytes of data memory.
Versions of these devices are being developed that use infrared, radio frequencies, and lasers to
communicate and have sensors for temperature, brightness, and magnetic fields. Current versions of
the devices last for about one week with continuous operation. Eventually, we may be able to
construct even smaller and cheaper devices using molecules. It is expected that prototype molecular
electronic devices will be built within a few years, although simple computers are probably at least a
decade away [59]. The age of inexpensive computing and communicating devices is on the horizon.
We can build the devices – the question is whether or not we can program them to do useful things.

Programming Paradigms. Work on amorphous computing has produced promising results in
programming paradigms for massively distributed systems [95]. The amorphous computed is a
similar application domain to swarms, except the devices are generally less powerful and considered
to be immobile. One technique for programming an amorphous computing medium is the Growing
Point Language (GPL) [94]. GPL uses a botanical metaphor of growing points that can secrete
pheromones that act as messages to nearby nodes, and lay down material that alters the state of
particles in the amorphous computing medium. Coore has demonstrated that this model is
sufficiently powerful to program complex structures such as the interconnect topology of a CMOS
circuit. Our emphasis will be on techniques for describing and reasoning about the behavior of
swarm programs.

Tuple spaces are a model for concurrent programming that obviate the need for devices to have
individual addresses [63, 91, 92]. A tuple space is a global shared associative memory. It provides a
method for adding, deleting, and reading information. Since values in the tuple space cannot be
modified, there is no need for synchronization – the values themselves provide all the necessary
coordination. The tuple space approach has many desirable properties, but a number of challenges
would need to be overcome before it could be used in for swarm computing. Scaling and mobility
present major problems, since it is normally assumed that all nodes can see the entire tuple space.
Partitioning a tuple space into neighborhoods may offer a partial solution, but this requires substantial
changes to the programming model. One approach is explored by LIME [93], a tuple space system
designed for mobile environments. In LIME, tuple spaces are transiently shared and distributed
across mobile hosts according to network proximity. In a swarm computing environment, it will not
be practical to maintain a traditional tuple space even if it is transient. Instead, there may be a use for
an “ether” space where tuples are broadcast to neighboring nodes. It is unclear whether or not the

 5

much weaker semantics can support a useful programming model, but we believe it will be
worthwhile to explore weaker variations on tuple space semantics for a swarm programming.

Networking. Although the principles of swarm computing are not necessarily tied to wireless
networks, most interesting swarm computing environments are wireless. Chemical diffusion and
light are two wireless communication methods, but the most promising short-term technology is
radio. Efforts to develop IEEE 802.11b [61] for high-bandwidth wireless local-area networks and the
Bluetooth [62] standard for low-cost, low-power small area networking will improve standardized,
low-power wireless networking protocols. Nagpal [5] and Bulusu and Heidemann et al. [6, 12] have
studied location estimation using GPS beacons. The Amorphous Computing group at MIT has
studied the problem of organizing a global coordinate system from local information [64].
Geographical forwarding is a promising dynamic addressing protocol, that fails in sparse regions of
the network. Xu, Heidemann, Estrin [6, 12] have proposed a geographical adaptive fidelity (GAF)
algorithm in which equivalence classes of nodes are formed from a routing perspective. The
Intentional Naming System (INS) is a resource discovery and service location system designed to
support dynamic networks [88]. This system requires that devices periodically advertise their name
specifiers to a centralized server, which manages the communication among the group. A swarm
implementation of INS requires eliminating the server, but alternative device-level message-
propagation protocols may suffice. The arbitrary structures of the network and the limited
computational abilities of the nodes make developing network primitives for swarm computing a
challenging research area.

Instead of routing messages between specific devices, work in sensor networks has explored
protocols that transmit information to devices as needed based on application constraints. A typical
scenario is a collection of sensors is dropped on a battlefield to monitor troop movements and
communicate relevant findings back to a command center. One technique is a communication
paradigm known as directed diffusion that distributes messages in a data-centric way [90]. Sensor
devices produce data in the form of attribute-value pairs. A sensing task is disseminated through the
sensor network by setting up gradients that draw data matching requested attributes towards the
request origin. Rather than specify this device directly, however, directed diffusion sends data back
in the direction of its request without needing to route data to a specific origin device. The use of
gradients enables robust, power-efficient communication without the need for complex routing
algorithms. In addition, these techniques take advantage of task-specific algorithms for aggregating
sensor data. Subramanian and Katz have generalized the techniques to develop an architecture for
building self-configurable systems where a large number of sensors automatically coordinate to
achieve a sensing task [89]. Swarm computing will use known techniques for organizing devices to
produce a network suitable for a given program. One goal of this research will be to produce methods
for self-organizing devices based on the desired properties of the application, instead of requiring
explicit programming.

Multiagent Systems. Biological mechanisms used by insect swarms provide a source of inspiration
for swarm computing. The behaviors of ants, bees, and fish demonstrate a variety of group behaviors
that have been studied extensively over the past century. The distributed behaviors of ants produce
self-organizing shortest-path selection [65, 66]. A novel approach to routing is inspired by the
behavior ant colonies use to find the best route to a food source [84]. Insights are also gained from
beetle circle defenses [86] and honeybees searching for a new home [85], foraging for food [67], and
growing their hives [68]. Animals also demonstrate that grouping minimizes losses in hostile
environments [69, 70]. We are inspired by biological systems, but don’t believe attempting to
duplicate them is the best way to produce swarm programs. As with humanity’s attempts to fly by
mimicking birds, attempts to copy biology directly failed; it was only when the underlying principles
behind the behavior were understood that we could produce flying behavior with machines.

 6

Some artificial intelligence researchers and roboticists have focused on building and simulating
robotic systems that utilize these group behaviors. Research by Arkin, Mataric, Stone, and others [71,
72, 73] demonstrates that hierarchical combinations of simple behavioral primitives result in
coordinated foraging, search and rescue, and soccer playing. These research projects explore the
influence of heterogeneity, communication protocols, and uncertainty on task performance.

Computer graphics researchers have also made contributions to simulation of groups and distributed
control algorithms. Reynolds accomplished early progress in the simulation of group behaviors [74]
by developing simulated flocks of birds. Each bird uses only information about nearby neighbors and
the simple algorithms fail to work if global knowledge is used. The group animation systems
developed by computer graphics researchers Blumberg, Terzopoulos, and Thalmann [75, 76, 77]
further demonstrate how simple behaviors can be combined to create more complex behaviors. In
particular, these researchers have investigated the ways simple behaviors are blended and the way one
behavior supercedes or truncates competing ones. Brogan’s research with multiagent groups of
simulated agents possessing significant dynamics investigates the ways physical limitations affect
group behaviors [79, 80, 81, 82]. These systems also demonstrate that simulated groups with simple
behaviors could adapt to a dynamic environment.

3. Research Plan
Our research plan is focused on creating the programming system shown in Figure 1. This comprises
the following main tasks:

1. Designing Seurat,1 a programming language for describing an application as a combination of
primitive behaviors .

2. Building a library of primitive behaviors defined over groups.
3. Designing specification languages for the device and environment models. These languages need

to be sufficiently detailed and precise to allow automated reasoning about the devices and
environments they describe, but also abstract and flexible enough to allow reasoning about
deployments that scale to millions of interacting devices.

4. Implementing development tools, compilers and deployment mechanisms for executing a
program on a collection of small devices in a physical environment (the program synthesizer).
The process of deploying a program on a computing swarm involves synthesizing the appropriate
combination of primitive behaviors to implement the application on a given set of devices
operating in a particular environment.

The main tools we have for these tasks are abstraction and hierarchy. Abstraction allows us to
remove the details of physical devices and environments from the concern of the programmer;
further, we are exploring new abstractions that provide convenient mechanisms for programmers to
express interactions. As group size becomes large, a hierarchy of abstractions controls the
propagation and inheritance of primitive behaviors in a systematic and analyzable way. The next four
subsections describe each component or our architecture. Section 3.5 discusses our experimental
platforms.

1 Seurat is named for Georges Seurat, a pointillist painter. Pointillism is a painting technique where a painting
is constructed by painting many small dots of color, and stronger hues are created by carefully placing dots of
pure colors. Seurat is reported to have said, “They see poetry in what I have done. No. I apply my method,
and that is all there is to it.” We hope to achieve a similar effect with swarm programming – programmers will
be able to construct what appear to be emergent programs by using well-defined and principled methods.

 7

3.1 Seurat: A Programming Language for Swarm Computing

To build a swarm application, we need tools for creating individual device programs from a desired
high-level behavior. We propose to design a program language that can be used to describe a desired
aggregate behavior of an ad-hoc collection of devices. Just as pointillist artists paint points that
represent shapes and styles, our programming synthesizer determines the device programs (the points)
that accomplish the functional properties (the shapes) and the non-functional properties (the styles)
desired by the programmer.

Aggregate Behavior Specification. A swarm program must specify the desired aggregate functional
and non-functional properties of the application. Aggregate functional properties are expressed by
combining primitives. In addition, primitives may be customized using both first order and higher
order parameters. It is important to note, however, that Seurat does not allow behavior specification
to program individual devices directly. This restriction is what enables the program synthesizer to
produce scalable applications. For example, the swarm program functional description for a search
and rescue application could be expressed as2:
 (disperse (scan-distance) |? scan (target-code)) > broadcast (found-signal)
 | listen (found-signal) >^ homing (found-signal)
The disperse primitive moves the swarm towards a state where no two devices are within its distance
parameter of each other (in this case, a value that depends on how large a region the devices can
scan). This is combined with the scan primitive, parameterized with a function that identifies the
target to locate. The |? combinator indicates that disperse and scan should be done concurrently,
until scan is satisfied. After this, the broadcast primitive takes over, transmitting a found-signal
throughout the swarm to attract other devices to the location. Simultaneously, the listen primitive
directs devices to listen for the found-signal. If it is heard, the device switches to the homing
primitive that directs the devices to the signal location. The >^ indicates that when listen is satisfied,
homing should preempt all other behaviors competing for the same resources (in this case, the
actuators that move the device).

Non-Functional Properties. Note that the functional description does not provide any guidance as to
how to do the primitive (disperse, broadcast, etc.) behaviors. Unlike a traditional programming
language where there is typically only one way to perform a primitive operation determined by the

2 This example is not meant to reflect the actual syntax and semantics of Seurat, but rather to give a flavor for
what that language might be and an idea of what our vision is for programming by combining primitives
defined as aggregate behaviors. Actually figuring out the details of the syntax and semantics is a challenging
part of the proposed research. The rough syntax and semantics used here has many flaws and ambiguities,
which would need to be addressed by a final language definition.

Program
Synthesizer

Environment
Model

Application
Description

Device
Model

Primitives
Library

Device
Units

Programmed
Device
Units

Device
Programs

Figure 1. Swarm Programming System.

 8

operand types, there are many possible ways of implementing each of the primitive swarm behaviors.
There is no single best implementation, but rather a set of implementations that exhibit different non-
functional properties over different scales and types of devices. The program synthesizer must
choose a combination of these implementations that best satisfies the non-functional requirements of
the applications and the properties of the devices and environment on which it will be deployed.

Non-functional properties include resource consumption, efficiency, security and survivability. The
programming language needs to provide constructs for expressing these properties at varying levels of
detail. For example, a home application for cleaning floors would need to specify the resource
consumption requirements to indicate that it is important that device batteries not need to be
recharged frequently. On the other hand, a search and rescue application for a hostile environment is
more concerned with efficiency, security and survivability. Although these applications are
functionally quite similar, their implementations are likely to differ considerably. The programmer,
however, should not need to be concerned with those details. Instead, she should be able to separate
the functional and non-functional requirements of the application and define different non-functional
requirements at different levels of abstraction depending on her particular application requirements.

Aggregate Behavior Control. A key mechanism for realizing different non-functional properties
lies in our ability to generate primitive implementations that trade-off resources for performance in a
way that is consistent with the non-functional properties required. This trade-off should be guided by
an objective function that expresses global performance requirements of the implementation. The
device programs should be constructed to achieve these global performance requirements. To achieve
this end, we break the problem into two independent questions: how to relate local performance of the
device to global performance metrics and how to control global performance to adhere to
specifications.

To provide an analytic foundation for answering these questions, we propose to develop real-time
control theory, a new branch of distributed computing that describes the mathematical properties of
controlling massively distributed software system components to achieve desired non-functional
performance assurances. This theory relates time, information content, communication constraints,
and environmental stimuli to internal software state representative of language primitive goals and
progress. The theory will provide guarantees on the proximity of actual primitive behavior to the
specified behavior. Such guarantees translate into specifications on the transient response of
performance control loops upon load changes.

We shall investigate alternative swarm representations for the purposes of performance control under
the new theory. The main distinction of the new representations is that they describe swarm
dynamics independent of an accurate load and resource requirements model. Thus, lack of prior
estimates of load and resources will not affect the integrity of the model used for performance control.

The investigators have applied control theory successfully in several case studies involving
distributed computing applications including performance guarantees in web servers [37,38], Internet
server delay control [30], proxy cache relative hit ratio control [32], and microprocessor thermal
management [26]. We have also had success with differential equation modeling of software
systems. Unlike queuing models and real-time scheduling models, differential equation models
describe system dynamics independently of the characterization of input load. For example, in [34]
we describe a liquid flow model of a real-time system for the purposes of controlling its deadline miss
ratio. In [31,33] we show how a commercial server is modeled by a differential equation to handle
overload. In [35], we describe a self-profiling subsystem that derives system models automatically
without external intervention. We shall extend these models to massively distributed systems.

 9

Our preliminary results [30,31,32,33] show that PID controllers can be used effectively for enforcing
resource allocation decisions in large software systems when system parameters (differential equation
coefficients) are constant. Elements of adaptive and robust control theory will be applied to situations
where system parameters are unknown or change at run-time. For example, deadline misses in real-
time systems increase nonlinearly with increased resource utilization. We shall investigate adaptive
feedback control and robust control techniques to account for system parameter uncertainty and
variations. To control a system with multiple objectives, multivariable control schemes will be
developed to implement device algorithms that achieve an aggregate behavior of choice.

Manipulating Physical Environments. A programming language typically includes an abstract
address space in which a programmer can create and manipulate objects. These objects provide an
abstract way to manipulate bits represented by machine hardware and storage systems. In contrast,
Seurat assumes a distributed machine that includes not only the traditional hardware and memory
local to a single device, but also a myriad of sensors and actuators that constitute an integral part of
the architecture. Programmers should be able to use abstract programming constructs to manipulate
and sense physical environments outside the device, as programmers today are able to use abstract
programming constructs to manipulate and acquire values from machine registers and storage. The
right abstractions for dealing with state in a physical environment, however, remain to be discovered.
Unlike traditional computer hardware, state represented in physical environments is subject to
physical processes such as diffusion and evaporation.

Time. Time is a variable of prime importance in any system that interacts directly with a physical
environment. Our team includes expertise in adaptive real-time computing which was the PhD topic
of one of the investigators [40]. Our goal is to develop programming primitives with predictable
timing performance. Techniques for predicting and controlling timing behavior have been
investigated at length in the real-time systems community. Our particular interest lies in extending
these techniques to massively distributed systems. In particular, we are interested in developing
theory that relates timing guarantees on primitive behavior to network load, such that bounding the
latter will imply satisfaction of the former. Systems that behave unpredictably on a microscopic scale
often tend to have more predictable aggregate properties. We shall develop algorithms that derive
aggregate performance models and utilize them to provide timing guarantees. Examples include
utilization bounds that guarantee meeting individual primitive deadlines as long as aggregate resource
utilization remains below certain limits. In initial work, we derived such bounds for tasks with
unknown arrival times [29]. These results will be useful in the implementation of programming
primitives that must execute in bounded time.

3.2 Building a Primitives Library
Implementation of high-level language primitives will require the design of distributed algorithms
that achieve the aggregate behavior specified by the primitive. The collection of such algorithms
constitutes the primitives library to be used by the compiler for code generation.

It is important to note that the primitives library is not a system library in the traditional sense – rather
than being a fixed functional implementation, each primitive encompasses a large class of
implementations that can be adapted and scaled to particular device, environment and behavioral
requirements. Unlike the swarm programs that must be described at the level of aggregate behavior,
implementations of library primitives define the behavior of individual devices. They are
programmed using traditional programming methods (e.g., a Java program that uses an API which
abstracts operations on device sensors and actuators). The challenge is to be able to analyze the
primitives well enough to describe their behavior formally in a way that can be scaled to different
numbers of devices and adapted to different devices and environments.

In an earlier section, we described the factors that underlie the most obvious differences between the
nature of algorithms we shall develop for implementing swarm primitives and previous research in

 10

traditional distributed computing. We will provide primitives at various levels of abstraction. At the
lowest level, we have primitives that deal specifically with communication; next, we have primitives
for organization; at the highest level, we have behavioral primitives. To synthesize a swarm program,
the program synthesizer must select different implementations of primitives at each level.

3.2.1. Communication Primitives
Communication support for swarm computing poses several challenges that arise from the three
distinctive properties of swarm systems described earlier: scale, physical embedding, and
administrator ratio. The challenges addressed in this project are as follows:

Addressing. When thousands of devices exist per administrator, the identity of a single device
becomes irrelevant. Hence, new addressing techniques need to be developed which do not rely on
single-device identifiers. Such schemes will rely on sets of diffused logical coordinates that create
gradients along different geographic dimensions in the network.

Routing. Current routing algorithms rely on device identifiers that can be mapped into routing
decisions such that a message is sent to the destination. In a network where individual devices do not
have identifiers, routing may rely on other means such as physical clues from the environment or the
gradients created by the addressing scheme. We call such clues and gradients, physical context. For
example, geographic routing algorithms may be appropriate which forward messages to specific
locations rather than specific devices. Geographic location, in this case, is an attribute of the physical
context of the message destination. A calculus will be developed to allow developing routing
algorithms that use addresses based on abstract coordinate systems for forwarding data towards the
destination.

Transport layer services. Current networks rely on high-level communication abstractions such as
sockets (IPC) in which a device can establish a data connection with another device for information
exchange. In this model the device is permanently associated with the connection end-point. In
contrast, when individual devices are not important, connection endpoints may be associated with
pools of devices that share a particular context or attributes, such as all devices within one centimeter
of location x. This pool of devices may dynamically change while preserving the end-point
abstraction.

Congestion control. From the perspective of the global network of elementary nodes, a key problem
is to ensure that the network is not too overloaded to perform its basic function – convey information.
This function is achieved with congestion-control algorithms. The most prominent such algorithm is
TCP congestion control. Unfortunately, TCP cannot work in the new environment because of its
wireless, unreliable nature and because of the lack of an IP layer, or a similar layer that exports node
addresses. A different form of congestion control will need to be implemented.

3.2.2. Organization Primitives
Organization primitives will provide higher-level functionality for group and hierarchy formation. To
develop scalable behavioral primitives, we need primitives that scale by organizing devices into
dynamic, adaptable hierarchies. The organization primitives must be designed to be resilient so that
they succeed even when implemented by only a fraction of devices. Further, each primitive may be
implemented in different ways that trade-off different non-functional properties. Example
organization primitives include:

Team management. While individual devices are not important in the new computing environment,
it will be important to create abstract higher-level entities that are addressable and can perform
computational functions as dictated by the programmer. These entities will be implemented at a

 11

lower level by dynamically evolving teams of elementary nodes. Hence, team management will be an
important challenge in the new environment.

Data management and storage. An important function of the network will be to collect and process
data. This data will often need to remain in the network until it is explicitly requested, or until some
critical event is identified that needs to be propagated immediately to the users. Hence, data
management and storage will be an important network function. The problem is tightly related to that
of web caching, except that in a sensor network case, data updates can originate from any node in the
network. Moreover, no node is powerful enough to act as a centralized data cache or storage facility.
Instead, fully distributed solutions are needed.

Priority control. The network may be employed to perform distributed tasks such as data
communication and storage, team management, and others. In the presence of multiple tasks and
limited resources the system should have a way of consistently prioritizing its operations. Protocols
will need to be developed to determine priorities of different activities in a distributed manner and in
a way that maximizes system utility. Mechanisms for priority enforcement will be implemented to
carry out the priority order computed by the aforementioned algorithms.

3.2.3. Behavioral Primitives
The behavioral primitives are programmed using the system services as well as new device code.
Devices provide different functionality, but all devices must provide standard interfaces that can be
used to create the primitives and underlying services. The library must provide a set of behavioral
primitives that provide sufficient functional behaviors to allow a large class of complex swarm
applications to be written. One of the theoretical questions we will address is whether there is a small
set of primitives from which a large well-defined class of applications can be created. In addition, the
library must provide implementations of those primitives that can be used to provide different non-
functional properties. One area we will explore is whether certain kinds of primitive implementations
can be combined so that a few primitive implementations and combination mechanisms will provide
access to a large design space of non-functional properties. Determining the set of behavioral
primitives is part of the proposed research. Some examples of likely behavioral primitives include
disperse, scan and homing introduced in Section 3.1. We expect that the final library will have
around twenty behavioral primitives. We will define a class of swarm computing programs that can
be created using the library primitives.

Here, we consider how disperse might be specified and implemented. The end state of disperse
satisfies a constraint of the form that no two devices are within d distance of each other. A naïve
implementation of disperse would program each device to detect the number of devices within d of it
by transmitting a message with the appropriate power to cover the d distance region surrounding it. If
one or more devices respond, move randomly for a short distance and try again. The naïve disperse
implementation is neither time nor power efficient, but its simplicity and symmetry make it easier to
reason about. Alternative implementations that offer different tradeoffs between time and power
given different costs for communication, computation and movement will be explored. We have
conducted preliminary experiments with an implementation in which devices communicate in a
hierarchical way to locate areas of low density and then move towards those low density areas. This
approach achieves dispersion in about 1/10th the time of the naïve implementation, but with
significant communication costs. We have conducted preliminary experiments in which some
fraction of the swarm runs the naïve implementation and the rest run the density driven
implementation to illustrate that many points in the design space for trading off quick results and
communication costs can be achieved with just two implementations.

 12

3.3 Specifying Environments and Devices
To generate device implementations for a Seurat program, the program synthesizer needs to be aware
of the application requirements, the properties of the devices in the swarm and the environment in
which it will execute. The non-functional properties, capabilities and relative costs of
communication, action and computation in the deployment environment determine the combination
of primitive implementations that will be used on the devices. In addition, failure modes, the
likelihood of hostile exogenous events and the importance of degrading gracefully for certain types of
failures all affect the appropriate implementation choices. Our programming system is designed to
separate those factors from the behavioral program by providing specifications of environments and
devices and using the program synthesizer to select appropriate implementations.

A key challenge in the device and environment specifications is determining the appropriate level of
abstraction. If the specifications contain too much detail, the complexity for both humans and the
programming tools will quickly become unmanageable. If they contain too little, there will not be
sufficient information available to the synthesizer to select the right combination of primitive
implementations. We propose to take an approach based on variable levels of detail. For example, in
some applications it may be necessary to describe the communication costs properties of the
environment in great detail; in others, it may be sufficient to know a radius distance within which
communication is almost always successful. Programmers should be able to use different levels of
detail based on the requirements of their application, and rely on the programming system to make
sensible assumptions in cases where details are not provided.

We also plan to explore methods for describing hostile environments, for example where an intruder
will deliberately destroy clusters of devices or jam communications. Although not much work has
been done in this area, our colleagues’ work on describing and simulating vulnerabilities in Raptor
[41] offers a good starting point for this exploration.

3.4 Deploying Swarm Programs
The Seurat programming model is different from the traditional compile, link, ship and execute
sequence. Unlike in traditional systems where it is adequate to send identical binaries to all hosts, we
anticipate most Seurat programs need to execute on a wide range of devices and in a variety of
environments. The combination of primitives selected to implement a program depends heavily on
the capabilities and number of available devices and the physical properties of the deployment
environment. We envision a day when individuals would have a swarm deployment device in their
home. It would (using initial discovery programs and devices) learn about the surrounding
environment and be configured according to the number and kinds of devices its owner has
purchased. A new Seurat program would be downloaded to provide some new functionality, and the
program synthesizer would synthesize appropriate programs for the owner’s devices and
environment, install those programs on the devices and launch them to carry out the application. This
all needs to happen without the owner doing anything other than perhaps selecting a new application
to deploy.

Our short term goals are more modest. We assume device and environment specifications will be
provided and focus on the problem of selecting the appropriate combination of primitive
implementations for an application given its behavioral description, nonfunctional requirements, and
the device and environment specifications.

Another crucial aspect of application development is debugging. Massively distributed programs are
particularly difficult to debug; the nondeterminism and lack of reproducibility in the environment
further exacerbate the problem. We will need to develop tools that allow programmers to monitor
and adjust an application at a variety of levels. Occasionally, it will be useful to examine the state
and operation of a single device. More often, though, debugging will need to be done at a higher
level. Attempting to debug a swarm program by examining the state of individual devices would be

 13

like debugging a C++ program by examining the state of individual electrons in the machine core.
Instead, we need to develop tools that allow programmers to monitor and evaluate properties of the
swarm as a whole. Our preliminary work in this area has produced a tool that takes a simulation log
and an evaluation function that produces a value for a snapshot of the world state and allows the
programmer to see the value of that evaluation function over time [42]. This simple tool points the
way to more adaptive and powerful techniques for debugging and evaluating swarm programs.

3.5 Experimental Platforms
We will conduct experiments using both physical and simulated environments. Physical experiments
are useful for validating our approach and revealing important issues that may be hidden in a
simulation. However, limits on the number of devices available to us in a physical experiment make
it impossible to test scaling over a sufficiently large range. Hence, we will focus on simulation
experiments, and use physical experiments to test the realism of our simulations.

Physical Experiments. At present, we have a lab with a limited number of Berkeley motes [16],
which run a micro-threaded operating system called TinyOS [16]. Each mote has up to three
embedded sensors. It includes a 8-bit 4 MHz micro-controller and has 8KB of program memory and
512 bytes of data memory. TinyOS, itself takes about 180 bytes of data memory, and around 4KB of
program memory. Future versions of the motes, which we expect to get in January 2002, will have
about 10 times the memory resources. The motes represent one possible point in the design space for
swarm computing devices.

Simulator Experiments. We will conduct experiments using several different simulators augmented
with analysis and code generation tools we develop. Because we need to deal with both low-level
behavior of physical devices (e.g., modeling power consumption and communication reliability) and
the high-level behavior of collections of millions of devices, there is no one simulator that is adequate
for all aspects of the project. Our team currently has experience with several simulators spanning the
design space we need to consider. These include:

Santa Fe Swarm simulator [43]. The Santa Fe Swarm simulator provides an easy interface for
modeling device behaviors and decent tools for visualizing swarm programs. It scales to a few
thousand devices, but is likely to be too slow for large scale experiments. In our preliminary work,
we have used Swarm to simulate several implementations of swarm primitives. Its programming
interface is simple enough that good undergraduate students are able to quickly develop and begin
experimenting with primitive behaviors [44].

Raptor [41]. Raptor is a simulator for survivability research developed at UVA. It scales to support
tens of thousands of nodes. Raptor provides a model for injecting controlled and catastrophic failures
into large networks that will be useful for our experiments involving hostile environments.

RoboCup Soccer Server [45]. The Soccer Server provides a semi-realistic physical simulation of
robots on a soccer field. It includes models of unreliable physical movement, communication and
vision. We have used the Soccer Server to experiment with behavioral swarm primitives in a more
hostile and realistic environment than the Santa Fe Swarm simulator [47].

SD/Fast [82]. SD/Fast is a commercial rigid-body simulation system. This software system permits
the development of accurate physical simulations of devices and the environments in which they
exist. We anticipate using this software to accurately model the scattering of devices on uneven
terrain and to simulate the movements of mobile devices.

 14

NS2 [20]: This is the most widely used network simulator today for IP networks. It also has extensive
support for wireless simulation that may be used for simulating large sets of devices in a physical
environment. SensorSim is an NS2-based simulator that focuses on sensor networks.

Centurion. We also have access to Centurion, a 300 machine cluster developed at UVA [46].
Centurion has been used successfully in several large scale simulation experiments. We will be able
to use Centurion to run massive scale simulation experiments as necessary to develop.

4. Impact Summary
Our goal is to develop a new program paradigm for the environment-aware, massively distributed
applications of the coming decades. While it would be unreasonable to expect to meet the many
challenges towards that goal within three years, we do expect to make concrete progress on several
fronts. In particular, we expect to have:

• Designed the Seurat programming language for swarm computing, and described its
semantics in a precise way.

• Developed a library of communication, organization and behavioral primitives. For each
primitive, we will have a functional specification, and multiple implementations with
different non-functional properties.

• Developed theories for combining implementations of primitives. Identified and defined a
class of implementations which can be combined with predictable properties.

• Gained an understanding of the scaling properties of swarm programs. Developed tools and
methods for managing massively scalable applications.

We request 3 years of funding. We anticipate achieving these milestones by the end of each year:

Year 1:
• Designed the Seurat programming language and languages for specifying nonfunctional

requirements and device and environment properties.
• Produced results from simulating combinations of primitives in different environments.
• Developed preliminary theoretical foundations and tools for analyzing aggregate behavior of a

large number of devices.
• Analyzed the critical mass for a number of primitive behaviors. Validated these results with

simulation experiments.
• Invented techniques for casting non-functional assurance problems into feedback performance

control problems.

Year 2:
• Developed a prototype swarm program synthesizer that takes a Seurat program, nonfunctional

requirements description, primitives library, device and environment models and produces
individual device programs.

• Produced formal descriptions of the semantics of our programming and specification languages.
• Investigated the composition properties of classes of implementations of primitive behaviors and

developed a theory for composition that addresses scale and nonfunctional properties.
• Expanded the primitives library to include adaptive algorithms that trade-off resource

consumption for performance.
• Developed an experimental physical test bed of static motes with sensors and radio transceivers.
• Implemented distributed protocols for aggregate behavior control based on theoretical results

from year 1 in both simulated and physical experiments.
• Implemented a communication micro-protocol stack for small devices including link, network,

and transport layer functionality that addresses the concerns of section (Implementing the
primitives).

 15

Year 3:
• Produced a complete swarm program synthesizer that is capable of generating device programs

for a large (well-defined) class of applications and a range of number and capabilities of devices
and environments.

• Produced a library of swarm primitives that is sufficiently comprehensive to be able to produce
swarm programs with a wide range of nonfunctional properties.

• Produced analytical and experimental results on the composition of primitive implementations.
Specified a set of implementation properties that lead to predictable composition properties.

• Extended the physical testbed to include mobile devices that can alter the environment.
Conducted experiments using the physical testbed with applications that store and manipulate
state in the environment.

We will disseminate our results through publications, talks, web sites, course materials and software.
The proposers have successful track records for distributing and supporting software3 and believe it is
worth the significant effort require to make software available and useful to other researchers both to
validate our own work and to foster a vibrant research community.

5. Results of Prior NSF Support
Tarek Abdelzaher is currently funded by an NSF CAREER award (“A Pull-Based Architecture for
Active Web Content Replication”, CCR-0093144), NSF grant ANI-0105873 (“A Framework for
Utilization-Based Absolute Delay Guarantees Using Adaptive Data Prefetching”) and is a co-PI on
NSF grant CCR-0098269 (“A Control-Theoretic Approach to Performance Guarantees in
Performance-Critical Systems”). The first two grants develop different distributed algorithms for
caching and content management in a web environment. The second develops performance feedback
control algorithms for software systems. These grants resulted in multiple publications
[26,27,28,29,30,32,33,34] and software prototypes that provide a good analytic foundation for
software control as well as expertise that may be leveraged in a deeply distributed system context
with performance assurances.

David Brogan is co-investigator on a recent NSF CISE Research Resources award (0130800) that
funds the purchase of the hardware required to build an immersive display system. This hardware
will be used to support Brogan's research of simulation level of detail as a perceptually acceptable
simplification technique for computer animation.

David Evans has been funded by NSF CAREER (“Programming the Swarm”, CCR-0092945) since
March 2001. The proposed work complements well both the research and educational work of the
CAREER proposal. The work funded under NSF CCR-0092945 has contributed to five publications
[47, 50, 56, 57, 58] and two papers currently in submission. The grant funds one graduate student.
She is focusing on security properties of stigmeric algorithms, in particular their resistance and
vulnerability to certain classes of attack. Two undergraduates have been supported since July 2001
using an REU supplement (GA10183). Ten undergraduate students are currently working (as
volunteers, independent study projects, and on undergraduate thesis projects) with the PI on research
directly connected to this project.

3 David Evans has distributed and supported LCLint, an extensible tool for lightweight static analysis that
exploits program annotations to detect likely security vulnerabilities, memory management problems, and other
common errors in C programs since 1994 [47, 49, 50]. LCLint has several thousand active users and is
described in several articles and books directed at working programmers [51, 52, 53, 54, 55].

 16

References

1. Lili Qiu, Venkata Padmanaban, Geoffrey M Voelker. On the Placement of Web Server

Replicas. Proc. IEEE INFOCOMM 2001.
2. Chalermek Intanagonwiwat, Ramesh Govindan and Deborah Estrin. Directed Diffusion: A

Scalable and Robust Communication Paradigm for Sensor Networks. In Proceedings of the
Sixth Annual International Conference on Mobile Computing and Networks (MobiCom
2000), August 2000, Boston, Massachusetts.

3. John Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh Govindan, Deborah
Estrin, and Deepak Ganesan. Building Efficient Wireless Sensor Networks with Low-Level
Naming. In Proceedings of the Symposium on Operating Systems Principles (SOSP 2001),
Lake Louise, Banff, Canada, ACM. October 2001.

4. Ya Xu, John Heidemann, and Deborah Estrin. Geography-informed Energy Conservation for
Ad Hoc Routing. Proceedings of the Seventh Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom 2001), Rome, Italy, July 16-21, 2001.

5. N. Bulusu, J. Heidemann and D. Estrin. GPS-less Low Cost Outdoor Localization For Very
Small Devices. IEEE Personal Communications, Special Issue on Smart Spaces and
Environments, Vol. 7, No. 5, pp. 28-34, October 2000.

6. Radhika Nagpal. Organizing a Global Coordinate System from Local Information on an
Amorphous Computer. MIT AI Memo 1666, August 1999

7. Young-Bae Ko and Nitin H. Vaidya. Location-Aided Routing(LAR) in Mobile Ad Hoc
Networks. In Proceedings of the Fourth Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom 1998), ACM, Dallas, TX, October 1998.

8. C. E. Perkins and E. M. Royer. Ad-hoc On Demand Distance Vector Routing. 2nd IEEE
Workshop on Mobile Computing Systems and Applications (WMCSA'99), New Orleans,
Louisiana, February 1999.

9. Charles E. Perkins and Pravin Bhagwat. Highly dynamic Destination-Sequenced Distance-
Vector routing (DSDV) for mobile computers. In SIGCOMM Symposium on
Communications Architectures and Protocols, (London, UK), pp. 212-225, Sept. 1994.

10. M. Charikar, S. Guha, E. Tardos and D.B. Shmoys. A constant factor approximation
algorithm for the k-median problem. Proceedings of the 31st Annual ACM symposium on
Theory of Computing.

11. M. Charikar and S.Guha. Improved Combinatorial Algorithms for the Facility Location and
K-median Problems. In Proc. Of the 40th Annual IEEE Conference on Foundations of
Computer Science, 1999.

12. N. Bulusu, J. Heidemann and D. Estrin. Adaptive Beacon Placement. Proceedings of the
21st International Conference on Distributed Computing Systems (ICDCS-21), Phoenix,
Arizona, April 2001.

13. John Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh Govindan, Deborah
Estrin, and Deepak Ganesan. Building Efficient Wireless Sensor Networks with Low-Level
Naming. In Proceedings of the Symposium on Operating Systems Principles (SOSP 2001),
Lake Louise, Banff, Canada, ACM. October 2001.

14. Tomasz Imielinski and Samir Goel. DataSpace - querying and monitoring deeply networked
collections in physical space. IEEE Personal Communications Magazine, Special Issue on
Networking the Physical World, October 2000.

15. Philippe Bonnet, J. E. Gehrke, and Praveen Seshadri. Querying the Physical World. IEEE
Personal Communications, Vol. 7, No. 5, October 2000, pages 10-15. Special Issue on Smart
Spaces and Environments.

 17

16. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture
directions for network sensors. ASPLOS 2000.

17. Development platform for self-organizing wireless sensor networks. Proc. SPIE, Unattended
Ground Sensor Technologies and Applications, Vol. 3713, p. 257-268.

18. A Compendium of NP optimization problems.
http://www.nada.kth.se/viggo/problrmlist/compendium.html

19. Self-organizing distributed sensor networks. Proc. SPIE, Unattended Ground Sensor
Technologies and Applications Vol. 3713, p. 229-237.

20. The ns-2 simulator. http://www.isi.edu/nsnam.
21. Distributed Operating Systems. Andrew S. Tanenbaum Prentice Hall.
22. Guillaume Pierre, Maarten van Steen, andAndrew S. Tanenbaum. Self-replicating Web

documents, Technical Report IR-486, Vrije Universiteit, Amsterdam, February 2001,
23. The Case for Geographical Push Caching. Proceedings of the Fifth Annual Workshop on Hot

Operating Systems, Orcas Island, WA, May 1995
24. E. M. Royer and C. E. Perkins, Multicast operation of the ad-hoc on-demand distance vector

routing protocol, in Proc. of ACM/IEEE Intl. Conference on Mobile Computing and
Networking (MOBICOM), Aug. 1999

25. A Survey of Multicast Technologies (2000) Vincent Roca, Luís Costa, Rolland Vida, Anca
Dracinschi, Serge Fdida September 2000.

26. Kevin Skadron, Tarek Abdelzaher, and Mircea Stan, ``Control-Theoretic Techniques and
Thermal RC Modeling for Accurate and Localized Dynamic Thermal Mangement,''
International Symposium on High Performance Computer Architecture, Cambridge, MA, Feb
2002.

27. Seejo Sebastine, Kyoung-Don Kang, Tarek F. Abdelzaher, Sang H. Son, ``A Scalable Web-
Based Real-Time Information Distribution Service for Industrial Applications,'' The 27th
Annual Conference of the IEEE Industrial Electronics Society, Denver, Colorado, December
2001.

28. John Stankovic, Tian He, Tarek Abdelzaher, Mike Marley, Gang Tao, Sang Son, ``Feedback
Control Scheduling in Distributed Systems,'' IEEE Real-Time Systems Symposium, London,
UK, December 2001.

29. Tarek Abdelzaher, Chenyang Lu, ``Schedulability Analysis and Utilization Bounds for
Highly Scalable Real-Time Services,'' IEEE Real-Time Technology and Applications
Symposium, TaiPei, Taiwan, June 2001.

30. Chenyang Lu, Tarek Abdelzaher, Jack Stankovic, Sang Son, ``A Feedback Control Approach
for Guaranteeing Relative Delays in Web Servers,'' IEEE Real-Time Technology and
Applications Symposium, TaiPei, Taiwan, June 2001.

31. Tarek Abdelzaher, Kang G. Shin, Nina Bhatti, ``Performance Guarantees for Web Server
End-Systems: A Control-Theoretical Approach,'' Accepted to IEEE Transactions on Parallel
and Distributed Systems , 2001.

32. Ying Lu, Avneesh Saxena, and Tarek F. Abdelzaher, ``Differentiated Caching Services; A
Control-Theoretical Approach,'' International Conference on Distributed Computing Systems,
Phoenix, Arizona, April 2001.

33. Tarek F. Abdelzaher and Chenyang Lu, ``Modeling and Performance Control of Internet
Servers,'' Invited Paper, 39th IEEE Conference on Decision and Control, Sydney, Australia,
December 2000.

34. Chenyang Lu, John A. Stankovic, Tarek F. Abdelzaher, Gang Tao, Sang H. Son and Michael
Marley, ``Performance Specifications and Metrics for Adaptive Real-Time Systems,'' IEEE
Real-Time Systems Symposium, Orlando, Florida, December 2000.

35. Tarek F. Abdelzaher, ``An Automoated Profiling Subsystem for QoS-Aware Services,'' IEEE
Real-Time Technology and Applications Symposium, Washington D.C., June 2000.

 18

36. Tarek F. Abdelzaher and Kang G. Shin, ``QoS Provisioning with qContracts in Web and
Multimedia Servers,'' IEEE Real-Time Systems Symposium, Pheonix, Arizona, December
1999.

37. Tarek F. Abdelzaher, Nina Bhatti, ``Adaptive Content Delivery for Web Server QoS,''
International Workshop on Quality of Service, London, UK, June 1999.

38. Tarek F. Abdelzaher, Nina Bhatti, ``Web Content Adaptation to Improve Server Overload
Behavior,'' International World Wide Web Conference, Toronto, Canada, May 1999.

39. Tarek F. Abdelzaher, Kang G. Shin, ``End-host Architecture for QoS-Adaptive
Communication,'' IEEE Real-Time Technology and Applications Symposium, Denver,
Colorado, June 1998.

40. Tarek F. Abdelzaher, ``QoS Adaptation in Real-Time Systems,'' Ph.D. Thesis, University of
Michigan, August 1999.

41. John Knight, Robert Schutt, Kevin Sullivan, “A System for Experimental Research in
Distributed Survivability Architectures”. UVA Technical Report CS-2000-29. August 2000.

42. William Oliver. Analyzing Group Behavior: Developing a Tool to Evaluate Swarm
Programs. UVA Senior Thesis in progress, expected completion May 2002.

43. Swarm Development Group. www.swarm.org.
44. Ryan Persaud. Investigating the Fundamentals of Swarm Computing. UVA Senior Thesis.

March 2001
45. Itsuki Noda. Soccer server: a simulator of RoboCup. JSAI AI-Symposium, 1995.
46. Legion Group. Centurion Applications Page.

http://legion.virginia.edu/centurion/Applications.html
47. Keen Browne, Jon McCune, Adam Trost, David Evans and David Brogan. Behavior

Combination and Swarm Programming: University of Virginia Team Description. To appear
in RoboCup International Symposium 2001, Lecture Notes in Artificial Intelligence.
Springer-Verlag 2002.

48. David Evans, John Guttag, Jim Horning and Yang Meng Tan. LCLint: A Tool for Using
Specifications to Check Code. Proceedings of the SIGSOFT Symposium on the Foundations
of Software Engineering. p. 87-96. December 1994.

49. David Evans. Static Detection of Dynamic Memory Errors. Proceedings of the SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’96). Philadelphia,
PA. p. 44-53. May 1996.

50. David Evans and David Larochelle. Improving Security Using Extensible Lightweight Static
Analysis. To appear in IEEE Software, Jan/Feb 2002.

51. David Santo Orcero. The Code Analyser LCLint. In Linux Journal, May 2000.
52. Pramode C E and Gopakumar C E. Static checking of C programs with LCLint. In Linux

Gazette, March 2000.
53. David Hanson. C Interfaces and Implementations: Techniques for Creating Reusable

Software. Addison Wesley Professional Computing Series, 1996.
54. Richard Heathfield (Editor), Lawrence Kirby (Editor). C Unleashed. Sams. 2000.
55. Michael Welschenbach. Cryptography in C and C++. APress. May 2001.
56. Joel Winstead and David Evans. Structured Exception Semantics for Concurrent Loops.

Fourth Workshop on Parallel/High-Performance Object-Oriented Scientific Computing.
October 2001.

57. Chenxi Wang, Antonio Carzaniga, David Evans and Alexander Wolf. Security Issues and
Requirements for Internet-Scale Publish-Subscribe Systems. To appear in Hawaii
International Conference on System Sciences, January 2002.

58. David Larochelle and David Evans. Statically Detecting Likely Buffer Overflow
Vulnerabilities. 10th USENIX Security Symposium, August 2001.

59. David Rotman. Molecular Computing. Technology Review. May/June 2000.

 19

60. J. M. Kahn, R. H. Katz and K. S. J. Pister. Next Century Challenges: Mobile Networking for
Smart Dust. ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom 99). p. 217-278. August 1999.

61. IEEE Std 802.11-1997: Short description of the standard.
http://www.manta.ieee.org/groups/802/11/main.html

62. Bluetooth Forum. http://www.bluetooth.net.
63. David Gelernter. Generative communication in Linda. ACM Transactions on Programing

Languages and Systems. Volume 7, Number 1, p. 80-112. January 1985.
64. Nagpal, Organizing a Global Coordinate System from Local Information on an Amorphous

Computer, MIT AI Memo No. 1666, August, 1999
65. S. Goss, S. Aron, J.L. Deneubourg, and J.M. Pasteels. Self-organized shortcuts in the

Argentine ant. Naturwissenschaften 76, 579-581, 1989.
66. R. Beckers, J.L. Deneubourg, and S. Goss. Trails and U-turns in the selection of the shortest

path by the ant Lasius niger. Journal of Theoretical Biology, 159, 397-415, 1992.
67. T. D. Seeley, C. A. Tovey, and J. H. Vande Vate. The pattern and effectiveness of forager

allocation among food sources in honey bee colonies. Journal of Theoretical Biology 160:23-
40, 1993.

68. Thomas D. Seeley. Wisdom of the Hive. Harvard University Press, 1996.
69. S. Veherencamp, Handbook of Behavior Neruobiology, Volume 3: Social Behavior and

Communication.
70. J. M. Cullen and E. Shaw and H. A. Baldwin, Methods for Measuring the Three-dimensional

Structure of Fish Schools, Animal Behavior, Volume 13, 534-543
71. R.C. Arkin. Dimensions of communication and social organization in multi-agent robotic

systems. In Proceedings of the Second International Conference on Simulation of Adaptive
Behavior: From Animals to Animats 2, pages 486-493, 1992.

72. M. S. Fontan and M.J. Mataric. Territorial multi-robot task division, IEEE Transactions on
Robotics and Automation, 14(5), Oct 1998, pages 815-822.

73. P. Stone and M. Veloso. Team-partitions, opaque-transition reinforcement learning.
Technical report, Carnegie Mellon University, April 1998.

74. C.W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. In Proceedings
of Siggraph ’87, pages 25-34. ACM SIGGRAPH, July 1987.

75. B.M. Blumberg and T.A. Galyean. Multi-level direction of autonomous creatures for real-
time virtual environments. In Proceedings of Siggraph 95, pages 47-54. ACM SIGGRAPH,
August 1995.

76. X. Tu and D. Terzopoulos. Artificial fishes: Physics, locomotion, perception, behavior. In
Proceedings of Siggraph ’94, pages 43-50. ACM SIGGRAPH, July 1994.

77. S.R. Musse and D. Thalmann. A model of human crowd behavior. In Computer Animation
and Simulation ’97, Eurographics Workshop, Budapest, pages 39-51. Springer-Verlag, 1996.

78. K. Sugihara and I. Suzuki. Distributed Motion Coordination of Multiple Mobile Robots,
Proceedings of the 1990 IEEE International Conference on Robotics and Automation, 138-
143. 1990.

79. D. Brogan and J. Hodgins. Group behaviors for systems with significant dynamics.
Autonomous Robots, 4:136-153, 1997.

80. D. Brogan, R. Metoyer, and J. Hodgins. Dynamically simulated characters for virtual
environments. IEEE Computer Graphics and Applications, 18(5):58-69, September/October
1998.

81. D. Brogan and J. Hodgins. Group behaviors for systems with significant dynamics.
Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Vol. 3, pp 528-534, 1995.

82. J. Hodgins, W. Wooten, D. Brogan, and J. O'Brien. Animating human athletics. Proceedings
of Siggraph '95. In Computer Graphics, pp 71-78, 1995.

 20

83. M. Hollars, D. Rosenthal and M. Sherman. SD/Fast, Symbolic Dynamics, 1991.
84. Eric Bonabeau and Guy Théraulaz. Swarm Smarts. Scientific American. p. 72-79. March

2000.
85. Camazine, S. et al. House Hunting by honey bee swarms. Insectes Sociaux Volume 46

Number 99. p. 348-360. January 1999.
86. Gilbert Waldbauer. Millions of Monarchs, Bunches of Beetles: How Bugs Find Strength in

Numbers. Harvard University Press. 2000.
87. Paul V. Mockapetris. Domain Names – Concepts and Facilities. Network Working Group,

RFC 1034. November 1987.
88. William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The design

and implementation of an intentional naming system. Proceedings of the 17th ACM
symposium on Operating systems principles. p. 186-201. December 1999.

89. Lakshminarayanan Subramanian and Randy H.Katz. An Architecture for Building Self-
Configurable Systems. To appear in IEEE/ACM Workshop on Mobile Ad Hoc Networking
and Computing. August 2000.

90. Chalermek Intanagonwiwat, Ramesh Govindan and Deborah Estrin. Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks. To appear in ACM
MobiCom 2000.

91. Eric Freeman, Susanne Hupfer and Ken Arnold. JavaSpaces Principles, Patterns and
Practice. Addison Wesley, 1999.

92. Tobin J. Lehman, Stephen W. McLaughry and Peter Wyckoff. T Spaces: The Next Wave.
IBM Systems Journal, August 1998.

93. Gian Pietro Picco, Amy L. Murphy and Gruia-Catalin Roman. LIME: Linda Meets Mobility.
Proceedings of the 1999 International Conference on Software Engineering. p. 368-377. May
1999.

94. Daniel Coore. Botanical Computing: A Developmental Approach to Generating Interconnect
Topologies on an Amorphous Computer. MIT PhD Thesis. December 1998.

95. Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy, Thomas F. Knight,
Jr., Radhika Nagpal, Erik Rauch, Gerald Jay Sussman, and Ron Weiss. Amorphous
Computing. Communications of the ACM, Volume 43, Number 5, p. 74-83. May 2000.

